If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-10y-21=0
a = 1; b = -10; c = -21;
Δ = b2-4ac
Δ = -102-4·1·(-21)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{46}}{2*1}=\frac{10-2\sqrt{46}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{46}}{2*1}=\frac{10+2\sqrt{46}}{2} $
| 20=278-w | | 3z−3=12 | | 3z−–3=12 | | -w+8=158 | | -x+243=110 | | 24x²+8-10x+14=12-2x²+8x+34 | | x+117=2x+1-8 | | 101=184-x | | 2u−(–2)=8 | | 2u−–2=8 | | -18=(1/4)x | | 5v+10=7v | | -4=k/2+-1 | | x=48-5x | | -2y+-6=4 | | -8+-t=-17 | | –8+–t=–17 | | 2x-3=-172x−3=−17 | | 3•(1+4y)= | | 10-y=60 | | 13^(5x+11)=3 | | 15-0.75x=-0.50x+13 | | 13^5x+11=3 | | 343=7^2x+5 | | 2(14n-2)-2=498 | | 18,4/x=4 | | x+6/3=2 | | 2(x+1)=-2x+18 | | 15,5/x=5 | | -2x+26=3(5x+1)+6 | | 35=5(3x-2) | | 2(3x+2)=-5x+48 |